Two Structural Results for Low Degree Polynomials and Applications

نویسندگان

  • Gil Cohen
  • Avishay Tal
چکیده

In this paper, two structural results concerning low degree polynomials over finite fields are given. The first states that over any finite field F, for any polynomial f on n variables with degree d ≤ log(n)/10, there exists a subspace of F with dimension Ω(d·n1/(d−1)) on which f is constant. This result is shown to be tight. Stated differently, a degree d polynomial cannot compute an affine disperser for dimension smaller than Ω(d ·n1/(d−1)). Using a recursive argument, we obtain our second structural result, showing that any degree d polynomial f induces a partition of F to affine subspaces of dimension Ω(n1/(d−1)!), such that f is constant on each part. We extend both structural results to more than one polynomial. We further prove an analog of the first structural result to sparse polynomials (with no restriction on the degree) and to functions that are close to low degree polynomials. We also consider the algorithmic aspect of the two structural results. Our structural results have various applications, two of which are: Dvir [11] introduced the notion of extractors for varieties, and gave explicit constructions of such extractors over large fields. We show that over any finite field any affine extractor is also an extractor for varieties with related parameters. Our reduction also holds for dispersers, and we conclude that Shaltiel’s affine disperser [26] is a disperser for varieties over F2. Ben-Sasson and Kopparty [6] proved that any degree 3 affine disperser over a prime field is also an affine extractor with related parameters. Using our structural results, and based on the work of Kaufman and Lovett [19] and Haramaty and Shpilka [17], we generalize this result to any constant degree. 1998 ACM Subject Classification F.1.0 Computation by Abstract Devices – General

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new algorithm for computing SAGBI bases up to an arbitrary degree

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.

متن کامل

Trajectory Planning Using High Order Polynomials under Acceleration Constraint

The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...

متن کامل

Bernstein's polynomials for convex functions and related results

In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of  Hermite-Hadamard inequality for convex functions.

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013